Cholesterol Sulfate (sodium salt) (Synonyms: SCS, Sodium Cholesteryl Sulfate) |
Katalog-Nr.GC43251 |
Cholesterol Sulfate (sodium salt) wurde erstmals 1965 aus menschlichem Plasma isoliert und in einer Konzentration von 300 µg/100 ml gefunden.
Products are for research use only. Not for human use. We do not sell to patients.
Cas No.: 2864-50-8
Sample solution is provided at 25 µL, 10mM.
Cholesterol Sulfate (sodium salt) wurde erstmals 1965 aus menschlichem Plasma isoliert und in einer Konzentration von 300 µg/100 ml gefunden [1]. Die scheinbare Gültigkeit dieses Anfangswerts wurde bald durch Berichte über Cholesterinsulfatspiegel im Plasma bestätigt, die bei einer begrenzten Anzahl von Probanden zwischen 174 und 328 µg/100 ml lagen [2,3].
Cholesterinsulfat hat die Fähigkeit, das intrinsische Blutgerinnungssystem durch Aktivierung von Faktor XII auszulösen, eine Aktion, die weder von anderen Steroidsulfaten noch von unkonjugiertem Cholesterin geteilt wird. Cholesterinsulfat aktiviert Prekallikrein in Gegenwart von Faktor XII [4]. Cholesterinsulfat aktiviert mehrere epidermale Protein-Kinase-C-Isozyme, insbesondere die ε-, Η- und ζ-Isoformen [5]. In vitro ist Cholesterinsulfat ein neuartiger Aktivator der Η-Isoform der Protein-Kinase C und ist dabei potenter als Phosphatidylserin plus Phorbolester [6]. Thrombin und Plasmin, Serinproteasen, die wesentliche Rollen bei der Blutgerinnung bzw. Fibrinolyse spielen, werden von Cholesterinsulfat stark gehemmt [7].
Cholesterinsulfat (Natriumsalz) (100 µM 2 h) Vorbehandlung führte zu einer deutlich abgeschwächten anti-CD3-induzierten CD3ζ-Phosphorylierung. Cholesterinsulfat interagiert spezifisch mit dem TCR, um die Transmembransignalübertragung zu hemmen, ohne die nachgelagerten Komponenten des Signalwegs zu beeinträchtigen [8]. Eine starke Reduktion der TCR-Nanocluster (T-Zell-Antigen-Rezeptor) wurde in Cholesterinsulfat-behandelten 5C.C7-T-Zellen beobachtet [8]. Die Erhöhung der Menge an Cholesterinsulfat (20 µl 25 mM) im Thymus von Mäusen durch intrathymische Injektion führte zu einer Abnahme der Gesamtthymozytenzahl [8].
References:
[1]. Drayer NM, Lieberman S. Isolation of cholesterol sulfate from human blood and gallstones. Biochemical and biophysical research communications. 1965 Jan 4;18(1):126-30.
[2]. Gurpide E, Roberts KD, Welch MT, Bandy L, Lieberman S. Studies on the metabolism of blood-borne cholesterol sulfate. Biochemistry. 1966 Oct 1;5(10):3352-62.
[3]. Winter JS, Bongiovanni AM. Identification of cholesterol sulfate in urine and plasma of normal and hypercholesterolemic subjects. The Journal of Clinical Endocrinology & Metabolism. 1968 Jun 1;28(6):927-30.
[4]. Shimada T, Kato H, Iwanaga S, Iwamori M, Nagai Y. Activation of factor XII and prekallikrein with cholesterol sulfate. Thrombosis research. 1985 Apr 1;38(1):21-31.
[5]. Denning MF, Kazanietz MG, Blumberg PM, Yuspa SH. Cholesterol sulfate activates multiple protein kinase C isoenzymes and induces granular cell differentiation in cultured murine keratinocytes. Cell Growth and Differentiation-Publication American Association for Cancer Research. 1995 Dec 1;6(12):1619-26.
[6]. Ikuta T, Chida K, Tajima O, Matsuura Y, Iwamori M, Ueda Y, Mizuno K, Ohno S, Kuroki T. Cholesterol sulfate, a novel activator for the eta isoform of protein kinase C. Cell Growth & Differentiation: the Molecular Biology Journal of the American Association for Cancer Research. 1994 Sep 1;5(9):943-7.
[7]. Iwamori M, Iwamori Y, Ito N. Regulation of the activities of thrombin and plasmin by cholesterol sulfate as a physiological inhibitor in human plasma. The Journal of Biochemistry. 1999 Mar 1;125(3):594-601.
[8]. Wang F, Beck-García K, Zorzin C, et al. Inhibition of T cell receptor signaling by cholesterol sulfate, a naturally occurring derivative of membrane cholesterol[J]. Nature immunology, 2016, 17(7): 844-850.
Cell experiment [1]: | |
Cell lines |
T cells from lymph nodes of 5C.C7 mice |
Preparation Method |
Cells were stimulated on the second day of culture with 50 units/ml of recombinant mouse IL-2. After 7-9 d of culture, T cell blasts were used for in vitro activation and staining assays. Before stimulation, T cell blasts were incubated with 100 µM Cholesterol Sulfate or DMSO control in RPMI-1640 medium supplemented with 1% lipid-free BSA or 5% lipid-deficient FCS for 2 h at 37°C。 |
Reaction Conditions |
100 µM for 2 h |
Applications |
Flow cytometry data showed that Cholesterol Sulfate pretreatment resulted in substantially attenuated anti-CD3-induced CD3ζ phosphorylation. |
Animal experiment [1]: | |
Animal models |
Sult2b1-/- mice were backcrossed onto C57BL/6 genetic background |
Preparation Method |
For the experiment of intrathymic injection, mice were anesthetized, and 20 µl DMSO or Cholesterol Sulfate (25 mM) was injected into thymus by a Hamilton syringe (10 µl each lobe). |
Dosage form |
20 µl 25 mM Cholesterol injected into thymus |
Applications |
Increasing the amount of Cholesterol Sulfate in the thymus by intrathymic injection led to a decrease in the number of total thymocytes. |
References: |
Cas No. | 2864-50-8 | SDF | |
Überlieferungen | SCS, Sodium Cholesteryl Sulfate | ||
Canonical SMILES | CC(C)CCC[C@@H](C)[C@@]1([H])CC[C@@]2([H])C3CC=C4C[C@@H](OS(=O)([O-])=O)CC[C@]4(C)[C@@]3([H])CC[C@@]21C.[Na+] | ||
Formula | C27H45O4S•Na | M.Wt | 488.7 |
Löslichkeit | 10mg/mL in DMSO | Storage | Store at -20°C,stored under nitrogen |
General tips | Please select the appropriate solvent to prepare the stock solution according to the
solubility of the product in different solvents; once the solution is prepared, please store it in
separate packages to avoid product failure caused by repeated freezing and thawing.Storage method
and period of the stock solution: When stored at -80°C, please use it within 6 months; when stored
at -20°C, please use it within 1 month. To increase solubility, heat the tube to 37°C and then oscillate in an ultrasonic bath for some time. |
||
Shipping Condition | Evaluation sample solution: shipped with blue ice. All other sizes available: with RT, or with Blue Ice upon request. |
Prepare stock solution | |||
![]() |
1 mg | 5 mg | 10 mg |
1 mM | 2.0462 mL | 10.2312 mL | 20.4625 mL |
5 mM | 0.4092 mL | 2.0462 mL | 4.0925 mL |
10 mM | 0.2046 mL | 1.0231 mL | 2.0462 mL |
Step 1: Enter information below (Recommended: An additional animal making an allowance for loss during the experiment)
Step 2: Enter the in vivo formulation (This is only the calculator, not formulation. Please contact us first if there is no in vivo formulation at the solubility Section.)
Calculation results:
Working concentration: mg/ml;
Method for preparing DMSO master liquid: mg drug pre-dissolved in μL DMSO ( Master liquid concentration mg/mL, Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug. )
Method for preparing in vivo formulation: Take μL DMSO master liquid, next addμL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O, mix and clarify.
Method for preparing in vivo formulation: Take μL DMSO master liquid, next add μL Corn oil, mix and clarify.
Note: 1. Please make sure the liquid is clear before adding the next solvent.
2. Be sure to add the solvent(s) in order. You must ensure that the solution obtained, in the previous addition, is a clear solution before proceeding to add the next solvent. Physical methods such as vortex, ultrasound or hot water bath can be used to aid dissolving.
3. All of the above co-solvents are available for purchase on the GlpBio website.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Average Rating: 5
(Based on Reviews and 15 reference(s) in Google Scholar.)GLPBIO products are for RESEARCH USE ONLY. Please make sure your review or question is research based.
Required fields are marked with *